Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Obstet Gynecol ; 223(5): 733.e1-733.e14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32417359

RESUMO

BACKGROUND: Uterine leiomyomas, the most common tumors of the female reproductive system, are characterized by excessive deposition of disordered stiff extracellular matrix and fundamental alteration in the mechanical signaling pathways. Specifically, these alterations affect the normal dynamic state of responsiveness to mechanical cues in the extracellular environment. These mechanical cues are converted through integrins, cell membrane receptors, to biochemical signals including cytoskeletal signaling pathways to maintain mechanical homeostasis. Leiomyoma cells overexpress ß1 integrin and other downstream mechanical signaling proteins. We previously reported that simvastatin, an antihyperlipidemic drug, has antileiomyoma effects through cellular, animal model, and epidemiologic studies. OBJECTIVE: This study aimed to examine the hypothesis that simvastatin might influence altered mechanotransduction in leiomyoma cells. STUDY DESIGN: This is a laboratory-based experimental study. Primary leiomyoma cells were isolated from 5 patients who underwent hysterectomy at the Department of Gynecology and Obstetrics of the Johns Hopkins University Hospital. Primary and immortalized human uterine leiomyoma cells were treated with simvastatin at increasing concentrations (0.001, 0.01, 0.1, and 1 µM, or control) for 48 hours. Protein and mRNA levels of ß1 integrin and extracellular matrix components involved in mechanical signaling were quantified by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence. In addition, we examined the effect of simvastatin on the activity of Ras homolog family member A using pull-down assay and gel contraction. RESULTS: We found that simvastatin significantly reduced the protein expression of ß1 integrin by 44% and type I collagen by 60% compared with untreated leiomyoma cells. Simvastatin-treated cells reduced phosphorylation of focal adhesion kinase down to 26%-60% of control, whereas it increased total focal adhesion kinase protein expression. Using a Ras homolog family member A pull-down activation assay, we observed reduced levels of active Ras homolog family member A in simvastatin-treated cells by 45%-85% compared with control. Consistent with impaired Ras homolog family member A activation, simvastatin treatment reduced tumor gel contraction where gel area was 122%-153% larger than control. Furthermore, simvastatin treatment led to reduced levels of mechanical signaling proteins involved in ß1 integrin downstream signaling, such as A-kinase anchor protein 13, Rho-associated protein kinase 1, myosin light-chain kinase, and cyclin D1. CONCLUSION: The results of this study suggest a possible therapeutic role of simvastatin in restoring the altered state of mechanotransduction signaling in leiomyoma. Collectively, these findings are aligned with previous epidemiologic studies and other reports and support the need for clinical trials.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Leiomioma/genética , Mecanotransdução Celular/efeitos dos fármacos , Sinvastatina/farmacologia , Neoplasias Uterinas/genética , Proteínas de Ancoragem à Quinase A/efeitos dos fármacos , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Colágeno Tipo I/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ciclina D1/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/genética , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina beta1/efeitos dos fármacos , Integrina beta1/genética , Integrina beta1/metabolismo , Leiomioma/metabolismo , Mecanotransdução Celular/genética , Antígenos de Histocompatibilidade Menor/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Quinase de Cadeia Leve de Miosina/efeitos dos fármacos , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Neoplasias Uterinas/metabolismo , Quinases Associadas a rho/efeitos dos fármacos , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Biol Psychiatry ; 86(2): 131-142, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076080

RESUMO

BACKGROUND: The basolateral amygdala (BLA) has been widely implicated in the pathophysiology of major depressive disorder. A-kinase anchoring protein 150 (AKAP150) directs kinases and phosphatases to synaptic glutamate receptors, controlling synaptic transmission and plasticity. However, the role of the AKAP150 in the BLA in major depressive disorder remains poorly understood. METHODS: Depressive-like behaviors in C57BL/6J mice were developed by chronic restraint stress (CRS). Mice received either intra-BLA injection of lentivirus-expressing Akap5 short hairpin RNA or Ht-31, a peptide to disrupt the interaction of AKAP150 and protein kinase A (PKA), followed by depressive-like behavioral tests. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptor (AMPAR)-mediated miniature excitatory postsynaptic currents were recorded by whole-cell patch-clamp techniques. RESULTS: Chronic stress exposure induced depressive-like behaviors, which were accompanied by an increase in total and synaptic AKAP150 expression in the BLA. Accordingly, CRS facilitated the association of AKAP150 with PKA, but not of calcineurin in the BLA. Intra-BLA infusion of lentivirus-expressing Akap5 short hairpin RNA or Ht-31 prevented depressive-like behaviors and normalized phosphorylation of serine 845 and surface expression of AMPAR subunit 1 (GluA1) in the BLA of CRS mice. Finally, blockage of AKAP150-PKA complex signaling rescued the changes in AMPAR-mediated miniature excitatory postsynaptic currents in depressive-like mice. CONCLUSIONS: These results suggest that AKAP150-PKA directly modulates BLA neuronal synaptic strength, and that AKAP150-PKA-GluA1 streamline signaling complex is responsible for CRS-induced disruption of synaptic AMPAR-mediated transmission and depressive-like behaviors in mice.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Complexo Nuclear Basolateral da Amígdala/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Depressão/genética , Depressão/psicologia , Estresse Psicológico/genética , Estresse Psicológico/psicologia , Proteínas de Ancoragem à Quinase A/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Depressão/etiologia , Elevação dos Membros Posteriores/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/farmacologia , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Restrição Física , Estresse Psicológico/complicações , Natação/psicologia , Transmissão Sináptica
3.
Cell Motil Cytoskeleton ; 66(9): 693-709, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19536823

RESUMO

Regulation of the cyclic AMP-dependent protein kinase (PKA) in subcellular space is required for cytoskeletal dynamics and chemotaxis. Currently, spatial regulation of PKA is thought to require the association of PKA regulatory (R) subunits with A-kinase anchoring proteins (AKAPs). Here, we show that the regulatory RIIalpha subunit of PKA associates with dynamic actin microspikes in an AKAP-independent manner. Both endogenous RIIalpha and a GFP-RIIalpha fusion protein co-localize with F-actin in microspikes within hippocampal neuron growth cones and the leading edge lamellae of NG108-15 cells. Live-cell imaging demonstrates that RIIalpha-associated microspikes are highly dynamic and that the coupling of RIIalpha to actin is tight, as the movement of both actin and RIIalpha are immediately and coincidently stopped by low-dose cytochalasin D. Importantly, co-localization of RIIalpha and actin in these structures is resistant to displacement by a cell-permeable disrupter of PKA-AKAP interactions. Biochemical fractionation confirms that a substantial pool of PKA RIIalpha is associated with the detergent-insoluble cytoskeleton and is resistant to extraction by a peptide inhibitor of AKAP interactions. Finally, mutation of the AKAP-binding domain of RIIalpha fails to disrupt its association with actin microspikes. These data provide the first demonstration of the physical association of a kinase with such dynamic actin structures, as well as the first demonstration of the ability of type-II PKA to localize to discrete subcellular structures independently of canonical AKAP function. This association is likely to be important for microfilament dynamics and cell migration and may prime the investigation of novel mechanisms for localizing PKA activity.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Actinas/metabolismo , Proteína Quinase Tipo II Dependente de AMP Cíclico/metabolismo , Citoesqueleto/enzimologia , Neurônios/enzimologia , Proteínas de Ancoragem à Quinase A/efeitos dos fármacos , Actinas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proteína Quinase Tipo II Dependente de AMP Cíclico/efeitos dos fármacos , Citocalasina D/farmacologia , Citoesqueleto/efeitos dos fármacos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Ratos
4.
Handb Exp Pharmacol ; (186): 3-14, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18491046

RESUMO

Common challenges to any cell are the processing of the extracellular stimuli it receives into intracellular signaling cascades that initiate a multitude of diverse biological functions. However, many of these stimuli act via a common signaling pathway, suggesting the cell must somehow discriminate between different stimuli and respond accordingly. Subcellular targeting through the association with adaptor and scaffolding proteins has emerged as a key mechanism by which cells maintain signaling specificity. Compartmentation of cAMP signaling is maintained by the clustering of cAMP signaling enzymes in discrete units by the scaffolding protein A-kinase anchoring proteins (AKAP). In doing so, AKAPs provide the molecular architecture for the cAMP micordomains that underlie the spacial-temporal control of cAMP signaling.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , AMP Cíclico/metabolismo , Sistemas de Liberação de Medicamentos , Proteínas de Ancoragem à Quinase A/efeitos dos fármacos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Transdução de Sinais/fisiologia
5.
Handb Exp Pharmacol ; (186): 483-503, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18491065

RESUMO

A-kinase-anchoring proteins (AKAPs) are a diverse family of about 50 scaffolding proteins. They are defined by the presence of a structurally conserved protein kinase A (PKA)-binding domain. AKAPs tether PKA and other signalling proteins such as further protein kinases, protein phosphatases and phosphodiesterases by direct protein-protein interactions to cellular compartments. Thus, AKAPs form the basis of signalling modules that integrate cellular signalling processes and limit these to defined sites. Disruption of AKAP functions by gene targeting, knockdown approaches and, in particular, pharmacological disruption of defined AKAP-dependent protein-protein interactions has revealed key roles of AKAPs in numerous processes, including the regulation of cardiac myocyte contractility and vasopressin-mediated water reabsorption in the kidney. Dysregulation of such processes causes diseases, including cardiovascular and renal disorders. In this review, we discuss AKAP functions elucidated by gene targeting and knockdown approaches, but mainly focus on studies utilizing peptides for disruption of direct AKAP-mediated protein-protein interactions. The latter studies point to direct AKAP-mediated protein-protein interactions as targets for novel drugs.


Assuntos
Proteínas de Ancoragem à Quinase A/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Proteínas/metabolismo , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Humanos , Ligação Proteica , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...